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Diversity-induced coherence resonance in spatially extended chaotic systems
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The effect of parameter diversity on coupled Chua systems is investigated. In the absence of diversity, the

systems jump back and forth between two variable domains of a chaotic attractor, and the residence times
within a single domain are uncertain. By introducing parameter diversity, a combined numerical and analytical
approach indicates that the systems can jump regularly from one domain to another at an intermediate range of
diversity, a signature of coherence resonance. Furthermore, the influences of coupling strength and the number
of units are also considered. Our results provide a possibility for the control of chaos in spatially extended
chaotic systems by the manipulation of parameter diversity.
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I. INTRODUCTION

Noise-induced counterintuitive phenomena have attracted
extensive attention over recent decades. Notably, stochastic
resonance (SR) [1,2] and coherence resonance (CR) [2—4]
have been widely investigated in experimental and theoreti-
cal work. SR is well known for the magnification of external
forcing acting upon a nonlinear system under the presence of
the right amount of noise, and CR refers to a resonantlike
phenomenon of coherent motion that can be induced by
noise only. Subsequently, more works have paid attention to
the effect of noise on spatially extended systems [5]. Many
interesting phenomena have been demonstrated, such as the
enhancement of spatiotemporal coherence behavior of non-
linear systems by the optimization of a single adjustable pa-
rameter (noise or coupling) in an array of coupled systems;
this effect is well known as array-enhanced stochastic reso-
nance [6,7] and array-enhanced coherence resonance [8,9].

SR and CR have been studied experimentally and theo-
retically in chaotic systems whose dynamical trajectories
have different preferred regions in phase space called chaotic
attractors [10-15]. Thus, the chaotic system can be consid-
ered as a generalized bistable system, in contrast to the case
of classical bistable systems. Even if additive or parametric
noise is absent, SR has also been observed in the Lorenz
model [16] and in the Rossler oscillator [17] as a result of
chaos acting as an internal noise source.

In contrast to noise, diversity involves the fact that
coupled units are not identical. This issue usually implies
that the units composing the ensemble present a disparity in
the values of some characteristic parameters, and has at-
tracted much attention [18—28]. For instance, Braiman et al.
have shown that diversity can enhance synchronization in an
array of Josephson junctions [18]. Mousseau has demon-
strated that the introduction of disorder can synchronize an
integrate-and-fire coupled-map earthquake model [19]. Lind-
ner et al. and Hou et al. have shown that an optimal magni-
tude of disorder, induced by the disparity of the pendulum
lengths in an array of coupled pendulums, can order spa-
tiotemporal chaos [20,21]. Recently, Tessone et al. reported
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that a disparity of the system’s parameters could induce a
resonant collective behavior in an ensemble of coupled
bistable or excitable systems (diversity-induced resonance)
[23]. Gassel et al. considered coupled forced FitzHugh-
Nagumo oscillators, and achieved the optimal enhancement
of the signal by both additive and multiplicative diversities
(double- diversity-induced resonance) [27].

An intriguing problem is whether diversity can induce a
resonant response in coupled chaotic systems. Therefore, for
the purpose of the present work, the influence of parameter
diversity on coupled Chua systems is discussed. We show
numerically and analytically that parameter diversity can in-
duce a resonant collective behavior, characterizing the peri-
odic movement between two domains of a chaotic attractor
in the presence of an intermediate level of diversity. These
results represent the main feature of CR; thereby we summa-
rize the diversity-induced CR in spatially extended chaotic
systems.

II. MODEL DESCRIPTION

In the present work, we consider N coupled Chua systems
whose dynamical equations are [29]

N
%= ylyi—h(x)]+ §E (x; = x7),
Nj=1

N

. 8
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Nj=l

N
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where g denotes the coupling strength, and the nonlinear
function h(x) is given by h(x)=bx+[(a-b)/2](|x+1|-|x
—1|). Some of the parameters are taken as B=100/7, a
=-1/7, and b=2/7. In order to introduce parameter diver-
sity, we assume that the parameter vy; is randomly selected
from a uniform distribution [yy— &, vyy+ 3], where & is the
measurement of diversity. For an uncoupled Chua system
with y=17,=9.0, the system shows chaotic dynamics and the
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FIG. 1. Spatiotemporal evolution of x; in N=100 coupled Chua
systems with coupling strength g=1.0. The horizontal and vertical
axes denote space and time, respectively. = (a) 0, (b) 0.08, and
(c) 0.15.

attractor has two variable domains (double-scroll structure).
A single unit remains in each of these two scrolls for some
indefinite time, and jumps chaotically between them. Nu-
merical integration of Eq. (1) is performed by a fourth-order
Runge-Kutta method with time steps of dr=0.001. To obtain
each numerical result, we perform 50 runs that have different
initial conditions. In each run, the first 10° time steps are
discarded and 10° time steps are used to investigate the dy-
namics of the systems.

III. RESULTS AND DISCUSSION

The spatiotemporal evolution of the variable x; in N
=100 coupled Chua systems is displayed in Fig. 1. The x;
values are represented in gray scale; white corresponds to
maximal values, black to minimal ones. In the absence of
diversity (6=0), the systems jump between two scrolls and
these jumps are irregular [see Fig. 1(a)]. If & is increased to
6=0.08, the regularity of jumps is obviously enhanced, as
seen in Fig. 1(b), and the systems exhibit a rather periodic
movement between the two scrolls. As J is further increased
to 6=0.15, the regularity of jumps is destroyed again [see
Fig. 1(c)].

Following the approach usually adopted in the literature
[1,14,15], we replace the evolution of x,(f) by a two-state
dynamics O(z), in which the detailed motion within each
scroll is neglected: ®(r)= 2.5 depending on the selected
scroll. Usually, additional crossing levels, which in our case
are at xic= * 1.5, are used in this procedure. In Fig. 2, we
exhibit the time evolution of the variable x and the step func-
tion O(7) in an uncoupled Chua system with y=1,=9.0. The
dashed line indicates the crossing levels.

According to the step function, we define a quantity to
measure the regularity of the residence time 7, i.e., the ratio
of the averaged value to the standard deviation of the resi-
dence time R=(T)//var(T) [4,7,8,15,30]. A bigger R implies
more regular jumps between two scrolls. The dependence of
R on the diversity & is depicted in Fig. 3. With an increment
of 8, R reaches a maximum and decreases as o increases
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FIG. 2. Temporal evolution of variable x and its representation
by the step function O () in an uncoupled Chua system. The dashed
line indicates the crossing levels.

further. Thus, there exists an optimal 6= &, for the maximal
R=R,,., indicating the occurrence of diversity-induced CR
in coupled chaotic systems.

Now, we consider the effects of coupling strength g and
the number of units N on diversity-induced CR in coupled
Chua systems. In Fig. 4, the dependence of R on & for dif-
ferent g is exhibited. One can notice that the optimal &,y
increases with an increment of g. However, the coupling
strength must exceed a certain value to obtain this resonan-
celike behavior. By calculating the case of coupling strength
£=0.7 and some smaller values, we find that this resonance-
like behavior is absent (not shown in Fig. 4). In Fig. 5, the
dependence of R on ¢ for different N is exhibited. One can
observe that the location of the resonant peak does not de-
pend on the number of units. On the other hand, the curve
becomes smoother as N is increased, which is easy to recog-
nize by comparing the curve for N=100 with the other three
curves. For N<100, we perform numerical calculations at
intervals of 10 from N=10 to 90. For N=50, we find the
curves become rather less smooth, and the resonant peak is
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FIG. 3. Dependence of R on the diversity 6 in N=100 coupled
Chua systems with coupling strength g=1.0. The inset depicts the
dependence of the quota of units in the periodic windows on the
diversity 6.
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FIG. 4. (Color online) Dependence of R on the diversity & for
different coupling strengths g with N=100.

hard to identify even if the numerical results are averaged
over a greater number of runs. This is because for a quite
small ensemble the parameter y deviates badly from a uni-
form random distribution.

Let us consider a single Chua system. In Fig. 6, we plot
the bifurcation diagram using the Poincaré section method,
and in the present work we use the plane z=1.5. One can
observe some periodic windows: [8.9658,8.9706] for
period-3  orbits, [8.979,8.9932] for period-2 orbits,
[9.037,9.0398] for period-2 orbits, and [9.1068,9.1108] for
period-5 orbits. If the diversity & is absent or very small, all
units assembling the systems are located in chaotic states.
Because a strong enough coupling interaction can synchro-
nize all units, the systems behave as a chaotic oscillator
whose jumps between two scrolls are irregular. As & in-
creases, more units that were originally located in the chaotic
region move into periodic windows. If ¢ increases further,
some units that were originally located in periodic windows
enter the chaotic region again. Thus, an optimal & should
exist for the largest quota of units in the periodic windows.
In the inset of Fig. 3, we draw the curve of the quota of units
in the periodic windows as a function of the diversity o.
Comparison of the inset of Fig. 3 with Fig. 4 shows that the

FIG. 5. (Color online) Dependence of R on the diversity & for
different numbers of units N with g=1.0.
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FIG. 6. Bifurcation diagram of an uncoupled Chua system.
Some periodic windows can be observed.

location of the peak is distinctly different, especially for
large values of the coupling strength. We can conclude that
there is obviously no direct connection between the quota of
units in the periodic windows and the observed resonance-
like phenomenon, and the dynamics for the coexistence of
periodic and chaotic oscillators is very complex.

To gain understanding of the above phenomena, we apply
the order parameter expansion method to gain further under-
standing of our results. The order parameter expansion
[31-33] is a useful approach for studying the changes in
coherent behavior when the parameter mismatch is increased
or the coupling strength is modified in populations of glo-
bally and strongly coupled elements. Let us briefly review
the main results by considering a set of equations of the form

xi=f(xi,pl-)+K(X—xi), i= 1,2, ...,N, (2)

where p; is a parameter different in every individual system.
All the elements are coupled to the mean field of the popu-
lation X=(x;) through the coupling function K(X-x;). The
basic idea of the method is to obtain an effective equation of
motion for the mean-field variable X, valid when all the ele-
ments evolve in time close to X. Under this assumption, one
gets the following approximate reduced equation for the
mean field by averaging Eq. (2) over the population:

X=F(X,po) + D, ,F(X,pp)W,

W=D, F(X,py) + [D.F(X.po) - KIW, (3)

where W={((x;—X)(p,—p,)) is a second macroscopic variable
or shape parameter, p,=(p;) is the average parameter value,
and ¢ is the variance of the parameter distribution. The
derivative operators are defined as follows: D,=d/dx, D,
=d/dp, and D, ,=*/x dp.

For the case of the present N globally coupled Chua equa-
tions [see Eq. (1)], one can easily introduce the reduced
equations for the mean field X=(X,.X,.X)" and W
=(Wx’ WV’WZ)T’ where Xa=<ai>’ Wa=<(ai_xa)(7i_‘}/0)>, a
=X,Y,3, and 70:<7i>:

X=F(X,y) + Dy F(X, %)W,
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FIG. 7. Bifurcation diagram of the reduced
system Eq. (4). Poincaré section of the mean field

X, and of the shape parameter W, with coupling
strength g=1.0 (top) and 1.2 (bottom).

W=D F(X,y) +[D,F(X,y) - KIW. (4)

Here the vector F(X,y)={y[X,-h(X,)].X,-X,+X_,
-BX,}", and the Jacobian D, F is

Yo Y O
D.F(X,y,) = 1 -1 1],
0O -B80

where j;==b-[(a—b)/2][sgn(X,+1)—sgn(X,—1)].
and D, F are

DyF(X’ 7()) = [Xy - h(Xx)sO’O]T,

DF

jn 10
D FX.%)={ 0 0 0
0 00

The coupling matrix K is K=diag{g,g,g}. Because the pa-
rameters 7y; are taken from a uniform distribution in the in-
terval [y,—95, vyy+06], we obtain the mean value y,=(7y;)
=9.0 and the variance 2= 6%*/3, where & denotes the diver-
Sity.

Using the Poincaré section method with the plane z=1.5,
the bifurcation diagram of the reduced system Eq. (4) can be
numerically calculated. We find that there exist coherent re-
gimes in the bifurcation diagram when the coupling strength
£>>0.7, and the coherent regimes correspond with the reso-
nant region in Fig. 4. For the case of g=0.7, we do not find
the existence of coherent regimes. For the case of g>0.7, the
coherent regimes have the trend of a rightward shift as the
coupling strength is increased, which confirms the numerical
results of Fig. 4. Here we demonstrate the cases of coupling
strength g=1.0 and 1.2 as seen in Fig. 7. The diagram pro-
vides coherent regimes around 6=0.08 for g=1.0 and &
~(.11 for g=1.2. One observes that all the coupled systems
have period-2 oscillations in the coherent regime. These ex-
planations agree well with numerical calculations, in particu-
lar, in the location of the resonant peak and its dependence
on the coupling strength (Figs. 3 and 4). Since a small popu-

lation size distorts the given parameter distribution, the ap-
plication of the order parameter expansion method to the
present work is valid only for large number of units, N. One
can clearly discern in Fig. 5 that the numerical result for N
=1000 fits the mean-field approximation better than for N
=100. Therefore our analysis can be readily generalized to
larger size.

It is useful to investigate the present used model when
another parameter is selected for diversity and using similar
dynamic equations, e.g., the well-known Lorenz equation.
For the model Eq. (1), we consider the case where the pa-
rameter B is selected for diversity and the other parameters
are fixed. The parameter S is assigned randomly from a uni-
form distribution along the units in the interval [By—3, B,
+ 6], and the parameters are B,=100/7, y=9.0, a=-1/7, and
b=2/7. For the coupled Lorenz equations x;=p(y;,—x;)
+g((xp)—x)), Yi=—xzi+rx;—y; and Z=xy;—bz;+g((z)-z).
the parameter r; is assigned randomly from a uniform distri-
bution along the units with the interval [ry— 38, ro+ 4], and
the other parameters are ry=69.96, p=10, b=8/3, and g
=6.0. Similarly to the previous results, in Fig. 8, the numeri-
cal calculation shows that these systems also show a resonant
response at the right diversity.

IV. CONCLUSION

In summary, we investigated numerically and analytically
the effect of parameter diversity on coupled Chua systems. It
is shown that the systems convert irregular jumps between
two scrolls to regular jumps if an intermediate level of pa-
rameter diversity is applied. These results represent the main
feature of CR. Therefore diversity-induced CR in coupled
chaotic systems is exhibited in the present work. Further-
more, we demonstrated the effects of coupling strength and
population size on diversity-induced CR. The location of the
resonant peak is dependent on the coupling strength and in-
dependent of the population size. Importantly, only when the
coupling strength exceeds a critical value is the resonance-
like phenomenon present, and vice versa. We looked for an
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FIG. 8. Dependence of R on the diversity 6 for Chua systems
when the parameter B is selected for diversity with g=1.0 (solid
squares), and for Lorenz systems with g=6.0 (hollow circles). The
number of unit of the two systems is N=100.
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analytical understanding by using the order parameter expan-
sion method and obtain a good agreement with the numerical
results. Diversity often influences our lives in many situa-
tions, like noise, so our results may have some interesting
implications for the control of chaos in spatially extended
chaotic systems by the manipulation of parameter diversity.
We also expect experimental confirmation of the present
work in the future.
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